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High Fidelity Interval Assignment

 Scott A. Mitchell1

 Abstract.Quadrilateral meshing algorithms impose certain constraints on the number ofintervals or mesh edges
of the curves bounding a surface. When constructing a conformal mesh of a collection of adjoining surfaces, the
constraints for all of the surfaces must be simultaneously satisfied. These constraints can be formulated as an
integer linear program. Not all solutions to this problem are equally desirable, however. The user typically
indicates a goal (soft-set) or required (hard-set) number of intervals for each curve. The hard-sets constrain the
problem further, while the soft-sets influence the objective function.

This paper describes an algorithm for solving this interval assignment problem. The objective is to have a solution
such that for each curve the positive or negative difference between its goal and assigned intervals is small relative
to its goal intervals. The algorithm solves a series of linear programs, and comes close to minimizing the maximum
vector of such differences. Then the algorithm solves a nearby mixed-integer linear program to satisfy certain “sum-
even” constraints. The algorithm reliably produces intervals that are very close to the user’s desires and is easily
extendible to new constraints. Earlier versions of the algorithm were slower than alternative algorithms, but this is
no longer a significant issue; in practice, the running time of the current version is a minor fraction of the time to
mesh, even in models composed of thousands of curves.

keywords. interval assignment, mixed-integer linear programming, conformal meshing, mesh control

1. Introduction

CUBIT[1] is a quadrilateral and hexahedral mesh generationtoolkit, meaning that the user has access to a variety
meshing algorithms and support tools. The usual steps for creating a mesh within CUBIT are the following: fi
model geometry is generated or imported; second, meshing schemes are assigned to curves, surfaces, and vo
the model; third, the element size of the mesh is specified; fourth, for the more structured surface meshing algo
additional parameters calledcorners[2] are determined; fifth, the exact number of mesh edges (calledintervals) for
each curve is determined; sixth, curves are meshed, then the surfaces; and lastly the volumes are meshed. M
these steps are automated or are in the process of being automated, and the user has the ability to specify p
such as the meshing scheme and element size.

This paper deals with the fifth step, determining the number of intervals for each curve. This step also arises in
meshing toolkits besides CUBIT. The significance of this step is that once it is complete, the surfaces may be m
independently (except for volume meshing restrictions such as sweep directions) and the mesh will be conform
assume that the meshing schemes and corners are given, and that the user has specified asoft-setgoal or a fixedhard-
setnumber ofintervalsfor each curve. The key difficulty is a global one: for each surface, its meshing algorithm
associated corners requires a certain relationship between the number of intervals on each bounding curve. 
meshing can impose additional constraints. Many CUBIT models are composed of many adjoining volumes; u
each curve is contained in two or more surfaces, and its intervals are constrained in some way by all of them
the interval constraints are linked throughout the model.

These constraints are typically[3] assembled into a mixed-integer linear program (MILP)[4]. The various surfa
meshing algorithms create two types of constraints. First, the more structured algorithms create linear constr
the form “intervals on opposite sides are equal” or “sum of intervals on two sides are greater than the third.” Se
unstructured algorithms create constraints of the form “sum of intervals on all curves are even.” These are form
by constraining an interval sum to be equal to 2k, wherek is an integer. Thesek variables force the problem to be
mixed-integer. (If a problem contains only constraints of the first type, then some previous interval assignmen

1samitch@sandia.gov. Parallel Computing Sciences Dept., Sandia National Laboratories, Albuquerque, NM 87185.
Scott Mitchell was supported by the Mathematical, Information and Computational Sciences Division of the U.S.
Department of Energy, Office of Energy Research, and works at Sandia National Laboratories, operated for the U.S.
DOE under contract No. DE-AL04-94AL8500. Sandia is a multiprogram laboratory operated by Sandia Corporation, 
Lockheed Martin Company, for the U.S. DOE.
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algorithms obtain an integer solution to a linear program for free.) Note that for a given choice of meshing algori
corners, and hard-set intervals, interval assignment may be infeasible.

Most previous work[3] relies on minimizing the sum of weighted differences between assigned and goal inter
whereas we essentially minimize the lexicographic vector of weighted differences. We get that the relative cha
each curve is small, whereas previous approaches typically change as few curves as possible.

Our algorithm has two steps. The first step attempts to find an integer solution to the linear constraints. We divi
problem into independent subproblems. For each curve in a problem, the number of intervals assigned to it corre
to a variable. We add two extradelta variables for each curve, that compute the positive and negative difference
between the assigned-interval and goal-interval. We weight the deltas inversely proportional to the interval go
compute relative change). We add another variableM that computes the maximum of the weighted deltas. We rel
the variables, allowing them to take on non-integer values. We solve this LP with objective function minimizeM. We
find a set oftight curves, i.e. curves that forceM to be as large as it is. We fix the tight curves’ intervals to nearby
integer values, in effect removing the curves from the LP. We recursively solve the reduced LP until all curve
fixed or all un-fixed curves have intervals equal to their goals, i.e. untilM is zero. At the end of the first step we have
an integer solution that satisfies all of the constraints except perhaps the sum-even constraints.

A common complication is that fixing all tight curves simultaneously at the chosen integer values may make t
problem infeasible; in that case we recursively try to fix only a fraction of these curves. A rare complication is t
is sometimes infeasible to round even a single curve’s intervals to an integer given previous rounding; in that c
fix the curve at a non-integer value which is changed to integer in the second step.

In the second step of the algorithm we solve the true MILP, using branch and bound (B&B) to get an integer so
We suspect a solution near the solution found in the first step. We un-fix the curve-interval variables, but bound
to ranges near their old fixed values. The sum-evenk variables are similarly bounded. We minimize the weightedsum
of k and curve-interval variables. Even with these small ranges and simple objective function, B&B may take too
for a given set of bounds it may take exponential time. If this is the case, we try less tight bounds. We have fo
of bounds. If the first step had an integer solution and no curves are hard-set, then for one of these sets of boun
is a solution. However, there is no guarantee that we can find such a solution within the allotted time.

This technique gives interval assignments that have very high fidelity to the user-desired goals, spreading ou
necessary changes to reduce mesh distortion. Our techniques appear to be more robust and general than pr

approaches. However, our techniques are slower because we iteratively solve the relaxed LP, taking time O(n3) rather

than O(n2).

Our techniques are practical for models with thousands of curves, depending on the meshing algorithms. Fig
shows some real-world models, with about 500 curves each, for which our current algorithm solves the interv
assignment problem quickly. To progress beyond thousands of curves, we conjecture that the problem shoul
iteratively divided into dependent subproblems, solved independently, and stitched together. This is the typic
strategy for huge LPs, e.g. airline crew scheduling problems.

The remainder of the paper is organized as follows. Section 2 describes the algorithm in detail. Section 2.1 de
the constraints for the different surface meshing algorithms. Section 2.2 contains some practical remarks on
implementing the constraints and the MILP. Section 2.3 motivates our approach. Section 2.4 describes iterat
solving the relaxed LP while Section 2.5 describes solving the bounded MILP. Section 3 gives some examples. S
3.1 goes through the algorithm steps in detail for a small problem. Section 3.2 illustrates how interval changes ty
get distributed. Section 3.3 shows some larger, real-world examples. Section 4 discusses the running time of
algorithm in practice, and discusses possible improvements for large problems. Section 5 concludes with a su
of the results and Section 5.1 discusses future directions.
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2. The Interval Assignment Algorithm

2.1  Mesh Scheme Constraints
We consider four representative schemes, calledPaving, Submapping, Mapping, andTri-Mapping. In CUBIT there
are additional schemes that e.g. cut off triangular corners or insert boundary layers that we do not consider hereloop
is a connected sequence of curves bounding a surface. A surface may have more than one loop. A curve ma
more than once in a loop. Except for paving, the constraints also depend on which vertices arecorners.The sequence
of curves between successive corners is called a side. Let I(e) denote the number of intervals subdividing a curve o
collection of curvese.

Paving is an unstructured quadrilateral meshing algorithm for general surfaces. It simply requires that for eac
the sum of intervals is even. (Note that foranyquadrilateral meshing scheme, the sum of intervals overall loops must
be even.) For each loopa,

Mapping places a structured, rectangularmx n mesh onto a geometric surface with a single loop. The first step is
pick corners, see Mitchell[2]. This partitions the loop into 4 connected subsequences of curves:up, right, downand
left. For surfaces such as a cylinder, there may be only two opposite sides. Opposite sides must have equal 

Submapping is a generalization of mapping. It subdivides a surface into regions that can be mapped. The four
up, right downand left, need not be subsequences, and the surface may have more than one loop. For each loop,
opposite sides must have equal intervals; see Tam[3], White[5] and Whiteley[6]. There are additional constra
prevent a loop from overlapping itself in interval-parameter space which we will discuss in future work.

Tri-mapping meshes a surface with a three-sidedmx nx pprimitive. The single loop bounding a surface is partitione
into three logical sides,a, b,andc. The constraints are

If there are only two bounding curves, then constraints are based on the assumption that the curve with the l
number of goal intervals will be subdivided into two sides after curve meshing. If there is only one curve, e.g.
surface is a disk, then we only have the last constraint .

2.2  From Constraints to MILP
The collection of constraints in Section 2.1 for all surfaces of the model are collected in a mixed-integer linear pro
(MILP). The general form of a MILP is the following

Minimize

such that

, , index set

I a( ) 2k= k integers 2.≥∈

I up( ) I down( )=

I right( ) I left( )˙̇=

I a( ) I b( )+ I c( ) 2+≥
I a( ) I c( )+ I b( ) 2+≥
I b( ) I c( )+ I a( ) 2+≥

I a( ) I b( ) I c( )+ + 2k= k integers 3.≥∈

I a( ) 2k= k, integers 3≥∈

c
T

x

Ax b=

Dx e≥

u x l≥ ≥

x j integers∈ j J∈
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Soft-set curves correspond to variablesxi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even”k variables (xj) are used to enforce that certain sums are even. Since a curve m
have at least one interval, a lower boundl of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for ea
“sum-even” variable. Constraints correspond to rows ofA or D. The objective function isc. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few s

2.3  Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the in
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and c
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitra
from the goals. Also, depending on the objective function, without good bounds on the integer variables the M
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution wh

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of thedeltas, where adelta is the
absolute value of an interval deviation from the goalG. Note|x-G| is a non-linear function, but it is a standard trick o
linear programming to compute it using a sum of two variables,|x-G| = D + d, by using the constraintsD ≥  x-Gand
d ≥ −x+G, whereD, d ≥ 0. More succinctly we constrain

and in effect minimizeD + d so that only one ofD or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have 
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long
Also, we chose a smaller weightW for D, increasing intervals, thanw for d, decreasing intervals. This again reflects
relative change. How much smallerW is thanw depends on the initial goal. In particular, we use weightsW andw
approximately1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-bas
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equi
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squa
(Actually, one would like to minimize something like the sum over all edgeseof the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conju
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A o
plex B will be the solution.
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Xe/Ge for Xe>GeandGe/Xe for Xe<Ge.) Given the slow running time of quadratic programming, it seems unlikely th
this could be made into a practical system.

Minimizing the sum of deltas minimizes the total change, but can lead to large individual changes. Our solutio
minimizeM, the maximum value of the weighted deltas. This maximumM can be computed by adding a constrain

for each curvei. Recall thatD anddare the vector of positive and negative deltas, or deviations from the goal interv
W andw their weights, which are approximately inversely proportional to the goal; and only one ofDi or di will be
non-zero.

Minimizing M meets the bulleted objective when applied to one pair of opposite sides on a rectangle-primitive su
or to one paved surface. However it fails to push a curve close to its goal if it is already better than the worst cu
it could fail miserably in a large model.

We might suppose to get around this defect by considering a combination of the maximum of deltas and the 
deltas, or by breaking up the problem into subregions in some way. For all such strategies we have explored, w
been able to find a plausible example where that strategy would give a poor solution.

2.4  Our Objective Function & Step 1: The Pseudo-Relaxed Problem
Our highest fidelity solution is to minimize the lexicographic vector of weighted deltas. This is accomplished b
iteratively solving a shrinking MILP, fixing one curve at each iteration. At each iteration, we find an optimal solu
of the MILP that minimizesM, the maximum weighted delta. We choose a curve with weighted delta equal toM, such
that we cannot reduce its delta without increasingM. Such a curve is calledtight.We fix the intervals of the tight curve
at its current (integer) solution value, and remove it from the MILP. We iterate untilM is zero, that is until all curves
are fixed or have zero deltas. This algorithm takes an unreasonable amount of time. Our fast algorithm is a modif
of this based on four speed improvements.

The first speed improvement is to relax the integer variables and solve an LP at each step, and round the nu
intervals for a tight curve to the nearest integer value. We call this thepseudo-relaxedproblem. On rare occasions we
paint ourselves into a corner. For example, we may round a tight curve to an odd number of intervals and fix it. Su
there are two curves on a side opposite it, and the rest of the model constrains those two curves to have equal in
Then at some future iteration when those two curves are tight, we will be unable to round either one and still 
feasible solution. In that case, we fix the curves to be a non-integer value, and rely on the second phase, Sec
to find a nearby integer solution.

The second speed improvement is to fix many curves at once. The main difficulty is determining thetightnessof many
deltas at once. First, we gather all of the curves whose weighted deltas are equal to the maximumM. It may be that
some of these deltas could be reduced further, but the LP has no incentive to do so since it wouldn’t affectM. To tell
the difference, we set up and solve a modified LP: we constrainM not to increase from its current value, and constra
each of the large deltas to be at least the ceiling of its current value minus one. For the objective function, we mi
the sum of the large deltas. We solve the LP. Any weighted delta in the new solution that is less thanM was not tight.
We recursively remove such non-tight curves from consideration and resolve the LP, until only tight curves re

Another difficulty in fixing many curves at once is determining which way to round and fixing as many as pos
while still remaining feasible. We round all curves’ intervals the same direction, either towards the next bigger in
or the next smaller integer. We choose rounding up or down depending on which we predict would result in the s
maximum weighted delta amongst the tight curves, assuming the problem remains feasible. We sort the list o
curves by descending weight (basically increasing goal). The reason is the highest weight deltas are most affe
improper rounding. We fix all of the tight curves, and resolve the LP. If the LP is infeasible, or the objective func
increases more than we predicted, then we recursively try to only fix the first 3/4 of the tight curves.

M WiDi w+
i
di≥



s are
s, one for
s does

n of the

. in a
must be

that
s well.

n which
en

ne of the
ome

lem.

endent
d below
jective
erval
urves

one set
essive”

time to
. To
once

ot the
ally an

the
 with a
es a

oor and
The third speed improvement is to explicitly divide the problem into independent subproblems. Many problem
composed of independent subproblems. E.g. in a submapped volume there are three independent subproblem
each dimension of the volume. Solving the entire problem will fix the same sets of curves at the same values a
solving the subproblems independently; solving each problem independently is faster because a larger fractio
curves of the relevant LP is fixed at each step.

The fourth speed improvement is to check for variables being completely determined by the fixed curves. E.g
mapped cube, once one of the four curves in an independent subproblem is fixed, all of the other three curves
equal to that fixed value as well. In our implementation, whenever a curve is fixed, all of the LP rows containing
curve are checked to see if there is only one free variable left. If so, then that free variable is recursively fixed a

One advantage of our method is that at the end of the pseudo-relaxed solution process, we have a solution i
(almost) all of the curve interval variables are integer, and that satisfies all the constraints except the sum-ev
constraints. That is, theks are not necessarily integer in the “sum of intervals = 2k” constraints. Intuitively, sum-even
constraints are unlikely to cause large deltas, as an odd sum can be changed to even by simply increasing o
summands by one. Similarly the non-integer curve intervals need only be changed by a small amount to bec
integer.

2.5 Step 2: Getting a Sum-Even Solution
We now construct a mixed integer linear program (MILP) whose solution will solve the interval assignment prob
We take the previous LP and throw away the constraints having to do with the deltas andM. This leaves the curve and
sum-even variables, which are now all constrained to be integer. For speed we divide the problem into indep
subproblems as in Section 2.4. In each subproblem, each curve and interval-sum variable is bounded above an
by its pseudo-relaxed solution value plus or minus a small value, depending on the four cases below. The ob
function is thesumof the intervals-sum variables, plus a small constant times the sum of the weighted curve-int
variables. The weightsVx are chosen as they were for the deltas, so that large-interval rather than small-interval c
x are changed (increased). I.e.

Four different sets of bounds on the integer variables are tried in sequence. If a feasible solution is found for 
of bounds, we don’t consider subsequent bounds. The more aggressive bounds are tried first. By “more aggr
we mean the bounds more likely to result in small changes to the intervals and less likely to be feasible.

A given set of bounds may not be feasible, and the branch and bound (B&B) procedure may take exponential
verify this. Also, even if a feasible solution is found, B&B may take exponential time to reach an optimal solution
circumvent these problems, we explicitly limit the running time of the search for an initial feasible solution and,
a feasible solution is found, the time spent improving it.

In practice, if there is a feasible solution, it is found quickly. This is because the objective is a simple sum, and n
maximum, of weighted deltas. Usually we avoid generating an exponential number of sub-problems. Also, usu
optimal solution is not found, but one that is close to optimal.

Bounds 1. Curve intervals can increase by at most one, the interval-sum variables are between the ceiling of 
pseudo-relaxed solution and ceiling + 1. This may be infeasible, especially in the presence of mapping faces
composite side opposite a single side. This strategy is similar to the Ford solution[8], which iteratively increas
largest non-even interval curve on an odd-sum surface by one.

Bounds 2.Curve intervals can increase or decrease by one. Interval-sum variables are bounded between the fl
the floor plus one of the pseudo-relaxed solution.

minimize Vaa Vbb …Vee k1 k2 …kn+ + + + +
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Bounds 3.Curve intervals can double, but can’t decrease. Interval-sum variables are bounded between the ceil
twice the ceiling of the pseudo-relaxed solution. If there are no hard set curves, then there is always a solution: d
all curve intervals still satisfies the (sub)mapping-face constraints, and since all curves now have an even nu
intervals, the sum-even constraints are also satisfied.

Bounds 4.Curve intervals can double, and can decrease by at most one. Interval-sum variables are bounded b
the floor and twice the ceiling of the pseudo-relaxed solution.

An alternative to B&B is to cast the problem as a matching problem on the dual graph. In the dual graph, odd in
sum loop surfaces are nodes, and edges are (shortest) paths in the model that go from one surface to anoth
via shared curves. A solution to the matching problem implies a solution to the interval assignment problem: in
the intervals by one on each of the curves dual to an edge path in the matching. Special care is needed for paths
two curves of the same side of a mapped surface, perhaps by alternating increasing and decreasing intervals o
This alternating idea is the reason behind allowing intervals to decrease in the above sets of bounds. Möhring e
casts the entire problem of interval assignment plus choosing the meshing primitive for each surface as a bidire
flow problem.

3. Examples

3.1  A Simple, Detailed Example
Figure 2 shows an example of two adjoining surfaces, one with mesh scheme pave and the other with map, 
various hard- and soft-set intervals. Note thatDi anddi are the deltas referred to in the last section, the positive an

negative difference between the goal intervals and the computed intervalsxi for curvei. Recall thatM is the computed
maximum of all of the deltas. Letk be the variable that computes the sum of intervals divided by two for the pav
surface. The following illustrates the interval assignment algorithm run for this problem. The initial constraint m
is the following:

Figure  2. A simple interval assignment example.

 Variables a b c e k

Bounds l,h 1 1 1 1 2

Map, opp. sides 1 -1 = 0

Map, opp. sides 1 = 3

Pave, sum-even -1 -1 2 = 15

map pave

e:1

a:2

3

b:4

5

c:13

10

= hard-set
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This divides into two pseudo-relaxed problems, A and B. First A is solved; the first iteration solution follows:

The LP determines that botha andb are tight. Based ona andb, we predict rounding up would result in anM of 0.5,
and rounding down anM of 0.8, so we choose to round intervals up:a is fixed at 3, andb is fixed at 3. Resolving we
note that the problem is feasible, withM within the expected range, soa andb are both left fixed. Indeed,M is zero;
recall the fixed curves have no contribution toM. So we move on to subproblemB. Its first iteration solution follows:

Since this is the first iteration, and the problem is feasible, we check for dependent variables before looking f
curves. We find thate is completely determined, so we fix it at 3. There are no remaining variables so we are d
with subproblem B and move onto the sum-even constraints. In this case, there is just one subproblem; curvesa andb
are already integer and need not be considered again. The first set of bounds are tried:

 Variables a b Da da Db db M

Bounds l,h 1 1

Minimize 1

Map, opp. sides 1 -1 = 0

a deltas 1 -1 1 = 2

a: 0.50 1.20 -1 ≤ 0

b deltas 1 -1 1 = 4

b: 0.25 0.40 -1 ≤ 0

Solution A.1 2.89 2.89 0.88 1.11 0.44

 Variables e De de M

Bounds l,h 1

Minimize 1

Map, opp. sides 1 = 3

e deltas 1 -1 1 = 1

e: 1.0 4.0 -1 ≤ 0

Solution B.2 3 2 2

 Variables c e k

Variable type Int Int Int

Low bounds 13 3 16

High bounds 14 4 17

Minimize 0.01 0.03 1

Map, opp. sides 1 = 3

Pave, sum-even -1 -1 2 = 15

Solution 1 14 3 16

M D d,≥

M D d,≥

M D d,≥
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We find a feasible solution, indeed an optimal solution, so there is no need to try the other, less aggressive b
Matching intervals was successful and the meshing process can proceed with meshing each surface indepen

3.2  An Illustration of Distributing Deltas

Figure 3 is a half-octagon that shows how minimizing the maximum weighted lexicographic vector of deltas

distributes interval changes.

3.3  Larger Examples
Running times are in cpu seconds for a Sun Ultra 2 workstation with one 300 MHz processor.

Submapping Heat Sink: See Figure 4 left. The heat sink is composed of 190 surfaces and 504 curves. The in

size is about twice the length of the shortest curve. We mesh all surfaces with submapping. The running time
negligible, 0.7 seconds; the conference version of the algorithm[10], without the four speedups, took 96 second
current version’s solution is also of higher quality: the two long curves of the base change from 54 to 62 interval
sixty curves change from 9 to 10 intervals. All of the 1- and 2-interval curves remain at their user-set intervals

Figure 3. This surface was rectangle-primitive meshed using our automatic corner picking[2] and interval a
ment algorithms.

Figure  4. Left, submapped heat sink. Right, the mostly-paved CMDS problem with varying interval size.
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There are three pseudo-relaxed subproblems, one for each of the principle axis. The first subproblem involves th
curves of the base. The first iteration finds 143 large-delta curves, of which 124 are tight, and all of which can be
The remaining 60 curves are all the only remaining free curve in a constraint row, and are so fixed without a 
iteration required. The second subproblem involves the long curves of the base. The first iteration finds 188 t
curves: all curves are tight! The two long curves of the base and many smaller curves opposite these long sides
tight. Rounding all of these curves up is infeasible: the sum of the roundings for the small curves is much mo
the roundings for the two long curves. Hence only the first 3/4 (141/188) small curves are fixed. But 39 other 
are completely determined by these fixed curves, and so are fixed as well. In the second iteration, the remain
curves are tight and fixed. The third subprogram is similar. There are no sum-even constraints.

CMDS problem. This flat set of surfaces will be swept into a volume mesh; see Figure 4 right. This example con
of 209 surfaces and 529 curves. All the surfaces are paved, except one surface is triangle-primitive mapped. Th
finds an integer solution satisfying the most aggressive bounds, but times out after 11.5 seconds at a sub-op
solution. Initially there are 80 surfaces with an odd loop-interval count. Solving modifies intervals on 78 curve

ECA Deck.See Figure 5.This is a representative example of models that are hex-meshed at Sandia. The mo
consists of ten volumes with about 141 curves. The volumes are interlocked and will be swept (i.e. meshed wit
dimensional scheme). Our independent subproblem decomposition strategy is particularly effective for this ty
model; because the paved source and target surfaces of the sweeping are interlaced with mapped side surfa
are many independent subproblems. Solving interval assignment takes 0.31 seconds, and overall meshing tak
3 minutes. Interval assignment increases seven curves’ intervals by one.

Tradeoffs. Figure 6 illustrates some interval compromises, and points out a problem when assigned-intervals
vary wildly from the goals: for a mapped surface whose opposite sides’ goals areG1 andG2, the compromise number
of intervalsx before rounding isx = 2.3 / (1.0 /G1 + 1.3 /G2) which converges to 2.3G1 asG2 approaches infinity.

Actual intervals are within one of 2.3G1 for G2 > 3.0G1
2 - 1.3G1. This problem is fundamental and arises from th

weights being inversely proportional to the goals. A possible solution is mentioned in Section 5.

4. Running Times and Scalability

Experiments suggest that on realistic models composed of swept volumes with paved source and target surf
mapped sides, the running time of the algorithm is insignificant. On models with a large number of adjacent p
surfaces, the running time can be noticeable, e.g. a minute for a model with 200 surfaces, due to theinteger linear
program.

Figure  5. The ECA Deck: left, a wireframe view of the model interior; right, a hidden-line view of the meshed volume
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Good running time mainly depends on explicitly dividing the problem into independent subproblems, and fixing
curves at once. These features are highly complementary. Consider a single pseudo-relaxed subproblem. Since the
variables of the problem are all dependent, there are typically only a few degrees of freedom. Consider a pro
containing a large number of curves on a side of a mapped surface, whose opposite side is hard-set. In this cas
interval increase in one of these curves allows a one-interval decrease in another curve. Hence all of these cu
in tension with one another, and they are typically all tight at the same iteration. In general, the more depend
curves are, the more they will be in tension with one another. Curves of independent subproblems will never 
tension with one another, so including them together in the same subproblem is not beneficial.

We explicitly limit the running time of the integer linear program, ILP, used to solve the sum-even constraints.
the pseudo-relaxed solution and the tight bounds usually help the running time because we are near a feasible
In practice, if there is a feasible solution for a set of bounds, it is usually found quickly. The main problem is tha
B&B process will take a large amount of time trying to improve the solution. Because of this, we proceed to the
set of bounds if a feasible solution is not found in O(n) time, and only allow B&B to improve the feasible solution for
O(n) time. The less aggressive bounds are given more time as well.

In our problems the number of columns (variables) an the number of rows (constraints) are typically within an
of magnitude of each other, since surfaces usually contain a bounded number of curves. The time for a singl

the LP solver is about O(n2), wheren is the size of the (roughly square) LP.

In the worst case, there is a single subproblem, and only a constant number of curves gets fixed at each iteratio
might occur with a chain of mapped surfaces, where each shared side is composed of two curves with deviously

goals. Then we require O(n) calls to the LP solver, each of which takes O(n2) time. Hence the pseudo-relaxed step ma

require O(n3) time. The worst case running time of the B&B process is exponential.

Running time seems to be the main drawback of our method. Perhaps something other than branch and bou
as matching techniques[9], might be used to satisfy the sum-even constraints, although it is not clear that this
improve running time in practice. Currently our algorithm is practical for typically structured models with thousa
of curves. For very large models, we conclude that each subproblem must be further subdivided in some way,
partial solutions stitched together.

5. Conclusions

We have described an implementation of a practical and robust way to solve the problem of globally assignin
number of mesh edges,intervals,to each curve in a complex of surfaces, so that each surface may be meshed acco
to pre-set meshing schemes, hard-set intervals, and corners. Unlike previous methods, our algorithm is good

Figure 6. All squares are rectangle-primitive mapped. These examples illustrate some interval trade-offs
from our choice of solution strategy and objective function. Given our strategy, for any set of constant weigh
large enough goal differences, we will see undesirable behavior like that in the lower right squares.
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each curve has its assigned intervals close to its goal. We come close to minimizing the lexicographic vector
weighted interval differences. Our implementation is robust, although sometimes the problem is infeasible an
algorithm could work, and in some huge models our algorithm is unable to find a solution in a reasonable am
time. The algorithm is practical for models of up to thousands of curves, given typical meshing schemes. In p
the algorithm is fast enough that it takes a very small faction of the total meshing time.

5.1  Future Directions

There are four broad categories of proposed improvements: finding and fixing global infeasibilities, see below
implementing volume scheme constraints, in progress; reducing the running time for huge problems, see Sec
and improving the quality when intervals must vary wildly, see below.

Currently the interval assignment problem may be feasible for each surface individually, but globally infeasib
to hard-set intervals, or corner and scheme selection. Figure 7 illustrates how a locally optimal corner choice m
to the global MILP being infeasible.

Identifying the cause of these infeasibilities, and fixing them automatically or at least reporting them to the us
essential for large problems. There are a few obvious options to explore:

• find a minimal sub-problem that is infeasible, or a maximal sub-problem that is feasible. Many variations o
problem are in general NP-complete, but there is some hope since the constraints arise from geometric dat
it is not clear how to correlate a feasible/infeasible sub-problem to the schemes and corners that need t
changed.

• determine if infeasibility is due to hard-set intervals by relaxing the hard-set constraints.

• recognize global corner-picking infeasibilities by relaxing the constraint that intervals are non-zero.

• Combining the above two bullets, a solution of all zeros is feasible. Allowing a solution to have zeros, and
exploring where the zeros actually occur, might give insight into the problem.

Currently, quality is poor when interval goals vary wildly. In some cases large changes in intervals are neces
order to satisfy mapping constraints. Foranyset ofconstantweights, if the changes are large enough then some cur
will have intervals decreased by too much; see Figure 6. One possible fix is whenever a tight curve’s pseudo-r
solution is less than half its goal, instead of fixing it at its solution value, set an upper bound on it of half its goa
reset its weight to a multiple greater than one of the weight based on half its goal.

Figure 7. Local corner picking makes global interval assignment impossible on this real-world geological
geometry. We get a system of equations that reduces toa+b = a, whose only solution hasb=0. But a curve must
have at least one interval!
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